Портал о бытовой технике

Виды интерфейсов пользователя. Развитие информационных технологий

Командный интерфейс

Наиболее старым интерфейсом является командный интерфейс (интерфейс командной строки ), который был наиболее распространен в период расцвета больших многопользовательских систем с алфавитно-цифровыми дисплеями. Для командного интерфейса характерно взаимодействие пользователя с ЭВМ с помощью командной строки, в которую вводятся команды определенного формата, а затем передаются к исполнению.

Командный интерфейс реализован в виде пакетной технологии и технологии командной строки.

Для ввода информации пользователь использует клавиатуру или другое символьное устройство ввода. Пользователь получает информацию в виде текста посредством дисплея или печатающего устройства (довольно редко).

Рисунок 1. Пример командного интерфейса

Работа с командным интерфейсом заключалась в следующем:

  • пользователь вводил команду с помощью последовательности символов (командной строки);
  • компьютер сопоставлял поступившую команду с имеющимся в его памяти набором команд;
  • выполнялось действие, которое соответствовало поступившей команде.

Замечание 1

Интересной особенностью интерфейса командной строки является возможность взаимодействия двух программ посредством имитации управляющей программой действий пользователя. Простота подачи команд и анализа выводимого текста делает это весьма эффективным.

К преимуществам интерфейса командной строки относят:

  • низкие требования к аппаратным средствам – минимальным набором для работы является клавиатура и символьное устройство вывода или терминал;
  • высокая степень унификации – взаимодействие обеспечивается через ввод и вывод символов, который часто реализуется через файловый ввод-вывод;
  • широкая возможность интеграции программ – посредством использования командного интерпретатора и перенаправления ввода-вывода.

Недостатками командного интерфейса считают:

  • плохую наглядность интерфейса – необходимо помнить команды или использовать справочник;
  • ограниченные возможности вывода информации – отсутствует графика.

Наиболее часто командный интерфейс используется при работе с командным интерпретатором, который используется как интерфейс управления операционной системой (Linux, xBSD, QNX, MS-DOS и др.).

Графический интерфейс пользователя

Графический интерфейс , WIMP-интерфейс (Window Image Menu Pointer) является неотъемлемым компонентом большинства современного программного обеспечения, которые ориентированы на работу конечного пользователя. Диалог пользователя с ПК в графическом интерфейсе ведется при помощи графических объектов: меню, значков и других элементов.

Основные достоинства графического интерфейса:

  • наглядность объектов;
  • обеспечение понятности для пользователя;
  • схожесть интерфейсов программ, которые написаны специально для использования в графической среде.

При работе с графическим интерфейсом для манипуляций с графическими объектами используются мышь и клавиатура. Пользователь работает с экранными формами, которые содержат объекты управления, меню, панели инструментов.

Рисунок 2. Пример графического интерфейса

Речевой интерфейс

Речевой интерфейс , SILK-интерфейс (Speech Image Language Knowledge) на данный момент существует только как «голосовой» (не считая биометрические интерфейсы, которые применяются не для управления ПК, а только для идентификации пользователя). Использование речевого интерфейса является очень перспективным направлением, т.к. введение информации с помощью голоса – самый быстрый и удобный способ. Т.к. качество распознавания устной речи пока не идеально, практическая реализация речевого интерфейса еще не стали доминирующими.

Речевой интерфейс обеспечивает приближенную к обычной, человеческой форму общения. ПК анализирует человеческую речь, находит в ней ключевые слова, по которым определяет команды. Речевой интерфейс требует высоких показателей аппаратных ресурсов ПК, поэтому его использование пока ограничено военным делом.

Рисунок 3.

При использовании речевого интерфейса на экране по команде пользователя ПК осуществляет переход между поисковыми образами, используя смысловые семантические связи. Речевая система дает возможность повысить эффективность работы вследствие того, что:

  • указывает пользователю ошибки в работе и находит пути их решения;
  • сообщает о ситуациях, которые нуждаются в исправлении;
  • осуществляет поиск справок из информационно-поисковых систем.

Замечание 2

Современные операционные системы поддерживают командный, графический и речевой интерфейсы.

В последнее время внимание привлекают новые виды интерфейса, такие как биометрический (мимический) и семантический (общественный). В связи с этим поставлена проблема создания общественного интерфейса, который будет включать в себя лучшие решения графического и речевого интерфейсов.

Как любое техническое устройство, компьютер обменивается информацией с человеком посредством набора определенных правил, обязательных как для машины, так и для человека. Эти правила в компьютерной литературе называются интерфейсом. Интерфейс может быть понятным и непонятным, дружественным и нет. К нему подходят многие прилагательные. Но в одном он постоянен: он есть, и никуда от него не денешься.

Интерфейс - это правила взаимодействия операционной системы с пользователями, а также соседних уровней в сети ЭВМ. От интерфейса зависит технология общения человека с компьютером.

Интерфейс - это, прежде всего, набор правил. Как любые правила, их можно обобщить, собрать в "кодекс", сгруппировать по общему признаку. Таким образом, мы пришли к понятию "вид интерфейса" как объединение по схожести способов взаимодействия человека и компьютеров. Можно предложить следующую схематическую классификацию различных интерфейсов общения человека и компьютера (рис.1.).

Пакетная технология. Исторически этот вид технологии появился первым. Она существовала уже на релейных машинах Зюса и Цюзе (Германия, 1937 год). Идея ее проста: на вход компьютера подается последовательность символов, в которых по определенным правилам указывается последовательность запущенных на выполнение программ. После выполнения очередной программы запускается следующая и т.д. Машина по определенным правилам находит для себя команды и данные. В качестве этой последовательности может выступать, например, перфолента, стопка перфокарт, последовательность нажатия клавиш электрической пишущей машинки (типа CONSUL). Машина также выдает свои сообщения на перфоратор, алфавитно-цифровое печатающее устройство (АЦПУ), ленту пишущей машинки.

Такая машина представляет собой "черный ящик" (точнее "белый шкаф"), в который постоянно подается информация и которая также постоянно "информирует" мир о своем состоянии. Человек здесь имеет малое влияние на работу машины - он может лишь приостановить работу машины, сменить программу и вновь запустить ЭВМ. Впоследствии, когда машины стали помощнее и могли обслуживать сразу нескольких пользователей, вечное ожидание пользователей типа: "Я послал данные машине. Жду, что она ответит. И ответит ли вообще?" - стало, мягко говоря, надоедать. К тому же вычислительные центры, вслед за газетами, стали вторым крупным "производителем" макулатуры. Поэтому с появлением алфавитно-цифровых дисплеев началась эра по-настоящему пользовательской технологии - командной строки.

Командный интерфейс.

Командный интерфейс называется так по тому, что в этом виде интерфейса человек подает "команды" компьютеру, а компьютер их выполняет и выдает результат человеку. Командный интерфейс реализован в виде пакетной технологии и технологии командной строки.


При этой технологии в качестве единственного способа ввода информации от человека к компьютеру служит клавиатура, а компьютер выводит информацию человеку с помощью алфавитно-цифрового дисплея (монитора). Эту комбинацию (монитор + клавиатура) стали называть терминалом, или консолью.

Команды набираются в командной строке. Командная строка представляет собой символ приглашения и мигающий прямоугольник – курсор. При нажатии клавиши на месте курсора появляются символы, а сам курсор смещается вправо. Команда заканчивается нажатием клавиши Enter (или Return.) После этого осуществляется переход в начало следующей строки. Именно с этой позиции компьютер выдает на монитор результаты своей работы. Затем процесс повторяется.

Технология командной строки уже работала на монохромных алфавитно-цифровых дисплеях. Поскольку вводить позволялось только буквы, цифры и знаки препинания, то технические характеристики дисплея были не существенны. В качестве монитора можно было использовать телевизионный приемник и даже трубку осциллографа.

Обе эти технологии реализуются в виде командного интерфейса - машине подаются на вход команды, а она как бы "отвечает" на них.

Преобладающим видом файлов при работе с командным интерфейсом стали текстовые файлы - их и только их можно было создать при помощи клавиатуры. На время наиболее широкого использования интерфейса командной строки приходится появление операционной системы UNIX и появление первых восьмиразрядных персональных компьютеров с многоплатформенной операционной системой CP/M.

WIMP - интерфейс (Window - окно, Image - образ, Menu - меню, Pointer - указатель). Характерной особенностью этого вида интерфейса является то, что диалог с пользователем ведется не с помощью команд, а с помощью графических образов - меню, окон, других элементов. Хотя и в этом интерфейсе подаются команды машине, но это делается "опосредственно", через графические образы. Идея графического интерфейса зародилась в середине 70-х годов, когда в исследовательском центре Xerox Palo Alto Research Center (PARC) была разработана концепция визуального интерфейса. Предпосылкой графического интерфейса явилось уменьшение времени реакции компьютера на команду, увеличение объема оперативной памяти, а также развитие технической базы компьютеров. Аппаратным основанием концепции, конечно же, явилось появление алфавитно-цифровых дисплеев на компьютерах, причем на этих дисплеях уже имелись такие эффекты, как "мерцание" символов, инверсия цвета (смена начертания белых символов на черном фоне обратным, то есть черных символов на белом фоне), подчеркивание символов. Эти эффекты распространились не на весь экран, а только на один или более символов. Следующим шагом явилось создание цветного дисплея, позволяющего выводить, вместе с этими эффектами, символы в 16 цветах на фоне с палитрой (то есть цветовым набором) из 8 цветов. После появления графических дисплеев, с возможностью вывода любых графических изображений в виде множества точек на экране различного цвета, фантазии в использовании экрана вообще не стало границ! Первая система с графическим интерфейсом 8010 Star Information System группы PARC, таким образом, появилась за четыре месяца до выхода в свет первого компьютера фирмы IBM в 1981 году. Первоначально визуальный интерфейс использовался только в программах. Постепенно он стал переходить и на операционные системы, используемых сначала на компьютерах Atari и Apple Macintosh, а затем и на IBM -- совместимых компьютерах.

С более раннего времени, и под влиянием также и этих концепций, проходил процесс по унификации в использовании клавиатуры и мыши прикладными программами. Слияние этих двух тенденций и привело к созданию того пользовательского интерфейса, с помощью которого, при минимальных затратах времени и средств на переучивание персонала, можно работать с любыми программным продуктом. Описание этого интерфейса, общего для всех приложений и операционных систем, и посвящена данная часть.

Графический интерфейс пользователя за время своего развития прошел две стадии и реализован на двух уровнях технологий: простой графический интерфейс и "чистый" WIMP - интерфейс.

На первом этапе графический интерфейс очень походил на технологию командной строки. Отличия от технологии командной строки заключались в следующем:

Ú При отображении символов допускалось выделение части символов цветом, инверсным изображением, подчеркиванием и мерцанием. Благодаря этому повысилась выразительность изображения.

Ú В зависимости от конкретной реализации графического интерфейса курсор может представляться не только мерцающим прямоугольником, но и некоторой областью, охватывающей несколько символов и даже часть экрана. Эта выделенная область отличается от других, невыделенных частей (обычно цветом).

Ú Нажатие клавиши Enter не всегда приводит к выполнению команды и переходу к следующей строке. Реакция на нажатие любой клавиши во многом зависит от того, в какой части экрана находился курсор.

Ú Кроме клавиши Enter, на клавиатуре все чаще стали использоваться "серые" клавиши управления курсором (см. раздел, посвященный клавиатуре в выпуске 3 данной серии.)

Ú Уже в этой редакции графического интерфейса стали использоваться манипуляторы (типа мыши, трекбола и т.п. - см. рисунок A.4.) Они позволяли быстро выделять нужную часть экрана и перемещать курсор.

Подводя итоги, можно привести следующие отличительные особенности этого интерфейса:

Ú Выделение областей экрана.

Ú Переопределение клавиш клавиатуры в зависимости от контекста.

Ú Использование манипуляторов и серых клавиш клавиатуры для управления курсором.

Ú Широкое использование цветных мониторов.

Появление этого типа интерфейса совпадает с широким распространением операционной системы MS-DOS. Именно она внедрила этот интерфейс в массы, благодаря чему 80-е годы прошли под знаком совершенствования этого типа интерфейса, улучшения характеристик отображения символов и других параметров монитора.

Типичным примером использования этого вида интерфейса является файловая оболочка Nortron Commander и текстовый редактор Multi-Edit. А текстовые редакторы Лексикон, ChiWriter и текстовый процессор Microsoft Word for Dos являются примером, как этот интерфейс превзошел сам себя.

Вторым этапом в развитии графического интерфейса стал "чистый" интерфейс WIMP, Этот подвид интерфейса характеризуется следующими особенностями:

Ú Вся работа с программами, файлами и документами происходит в окнах - определенных очерченных рамкой частях экрана.

Ú Все программы, файлы, документы, устройства и другие объекты представляются в виде значков - иконок. При открытии иконки превращаются в окна.

Ú Все действия с объектами осуществляются с помощью меню. Хотя меню появилось на первом этапе становления графического интерфейса, оно не имело в нем главенствующего значения, а служило лишь дополнением к командной строке. В чистом WIMP - интерфейсе меню становится основным элементом управления.

Ú Широкое использование манипуляторов для указания на объекты. Манипулятор перестает быть просто игрушкой - дополнением к клавиатуре, а становится основным элементом управления. С помощью манипулятора указывают на любую область экрана, окна или пиктограммы, выделяют ее, а уже потом через меню или с использованием других технологий осуществляют управление ими.

Следует отметить, что WIMP требует для своей реализации цветной растровый дисплей с высоким разрешением и манипулятор. Также программы, ориентированные на этот вид интерфейса, предъявляют повышенные требования к производительности компьютера, объему его памяти, пропускной способности шины и т.п. Однако этот вид интерфейса наиболее прост в усвоении и интуитивно понятен. Поэтому сейчас WIMP - интерфейс стал стандартом де-факто.

Ярким примером программ с графическим интерфейсом является операционная система Microsoft Windows.

SILK - интерфейс (Speech - речь, Image - образ, Language - язык, Knowlege - знание). Этот вид интерфейса наиболее приближен к обычной, человеческой форме общения. В рамках этого интерфейса идет обычный "разговор" человека и компьютера. При этом компьютер находит для себя команды, анализируя человеческую речь и находя в ней ключевые фразы. Результат выполнения команд он также преобразует в понятную человеку форму. Этот вид интерфейса наиболее требователен к аппаратным ресурсам компьютера, и поэтому его применяют в основном для военных целей.

С середины 90-х годов, после появления недорогих звуковых карт и широкого распространения технологий распознавания речи, появился так называемый "речевая технология" SILK - интерфейса. При этой технологии команды подаются голосом путем произнесения специальных зарезервированных слов - команд.

Слова должны выговариваться четко, в одном темпе. Между словами обязательна пауза. Из-за неразвитости алгоритма распознавания речи такие системы требует индивидуальной предварительной настройки на каждого конкретного пользователя.

"Речевая" технология является простейшей реализацией SILK - интерфейса.

Биометрическая технология ("Мимический интерфейс".)

Эта технология возникла в конце 90-х годов XX века и на момент написания книги еще разрабатывается. Для управления компьютером используется выражение лица человека, направление его взгляда, размер зрачка и другие признаки. Для идентификации пользователя используется рисунок радужной оболочки его глаз, отпечатки пальцев и другая уникальная информация. Изображения считываются с цифровой видеокамеры, а затем с помощью специальных программ распознавания образов из этого изображения выделяются команды. Эта технология, по-видимому, займет свое место в программных продуктах и приложениях, где важно точно идентифицировать пользователя компьютера.

«Передаточный механизм» - Итог урока. Технология 3 класс. Обучение конструированию различных технических моделей с приводом механизма. Перекрёстная передача - когда колёса крутятся в разных направлениях. Виды передач: 1 - ременная; 2 - цепная; 3 - зубчатая. Изделия, имеющие передачу: транспортёр, подъёмный кран, мельница. Главная часть конструкции мельницы - передаточный механизм.

«Интерфейсы компьютера» - Пользовательский интерфейс. Программное обеспечение. Служебные программы. Персональный компьютер как система. Обеспечивается операционной системой компьютера. Укажите входы и выходы. Аппаратный интерфейс. Аппаратно-программный интерфейс. Операционная система. Текстовые файлы. Системные программы. Аппаратно-программный интерфейс – взаимодействие аппаратного и программного обеспечения компьютера.

«Технологии на уроках» - Формы организации могут быть разные: урок, групповая, индивидуальная, парная. Активный и интерактивный методы применяются мной с 5 по 11 классы. Виды технологий: Технология личностно-ориентированного обучение. Технология развивающего обучения. Технология личностно-ориентированного обучение Проектно-исследовательская технология.

«Образовательные технологии в школе» - Лаборатория нерешенных проблем. Методическая поддержка творческих проектов ОУ и преподавателей. Игровые технологии. Рост показателя использования ИКТ в учебном процессе. Распространение передового педагогического опыта. Снижение количества второгодников. Рост мастерства педагогов, влияние на качество урока.

«Технология 6 - 7 - 8 класс» - В чём измеряется электрическая энергия? Какая мерка определяет размер плечевого изделия? Что, по народным представлениям, означало начало всего живого? Какая деталь приводит в движение все рабочие органы швейной машины? Исходное сырье для изготовления кареты для Золушки. Какую функцию выполняют желобки на лезвии иглы?

«Разделы технологии» - А у нас из блестящего бисера - Необычная красота. Предмет – Технология. Лоскутное шитье издавна известно многим народам. Национальные праздники и обряды, национальная одежда. Рассказывают о традициях разных народов, национальных праздниках и обрядах. После выпечки пампушки немного охладить, натереть толченым чесноком.

Всякий раз, включая компьютер, вы имеете дело с пользовательским интерфейсом (User Interface, UI), который кажется простым и очевидным, но, чтобы он стал таким, в индустрии было вложено немало труда. Оглянемся на 1990-е годы, когда настольные компьютеры стали повсеместными, и приведем хронологию развития технологий UI. Рассмотрим также, как развивались средства программирования UI и что они собой представляют сегодня. В табл. 1 приведен перечень основных задач разработки UI, на базе которых проводился анализ различных технологий реализации пользовательских интерфейсов, распределенных по категориям. Каждая из этих категорий включает технологии, решающие одну или более задач примерно одинаковыми способами.

Формы ввода с привязкой к СУБД

Одну из главных категорий средств разработки UI образуют инструментарии, ориентированные на формы ввода данных с привязкой к реляционным СУБД. Суть данного подхода состоит в создании UI для приложений путем построения форм, отображающих значения полей базы в соответствующих элементах управления: текстовых полях, списках, кнопках-флажках, таблицах и т. п. Инструментарий позволяет выполнять навигацию по такой форме и устанавливать прямую связь между элементами управления и данными в базе. Разработчику не нужно заботиться о блокировках, передаче, преобразовании и обновлении данных - когда пользователь, например, переключает номер записи в форме, ее остальные поля обновляются автоматически. Аналогично, если пользователь меняет значение в поле, привязанном к какой-либо записи из базы, это изменение мгновенно в ней сохраняется. Чтобы добиться этого, не нужно специально писать код - достаточно задекларировать привязку элемента управления или всей формы к источнику данных. Таким образом, поддержка привязки к данным в инструментах этой категории - одна из сильных сторон данного метода. Задачи планировки и стилизации UI в таких средах решаются с помощью дизайнеров форм и специализированных объектно-ориентированных API. Для управления поведением UI обычно предлагаются обработчики событий (представляющие собой методы, реализованные на основном языке программирования среды разработки), тогда как для контроля вводимых значений используются выражения (в том числе регулярные). Типичные представители этой многочисленной категории инструментариев - Microsoft Access и Oracle Forms.

Обработчики шаблонов

Технологии построения пользовательских интерфейсов на базе шаблонов, реализованных на языках разметки, начали повсеместно применяться с середины 1990-х. Основные преимущества шаблонов - гибкость и широта возможностей создания динамических пользовательских веб-интерфейсов, особенно с точки зрения разработки структуры и планировки. Вначале в таких инструментариях использовались шаблоны, в которых планировка и структура UI задавались с помощью языка разметки, а привязка к данным осуществлялась с помощью небольших блоков на языке высокого уровня (Java, C#, PHP, Python и т. д.). Последние могли использоваться в комбинации с разметкой; например, путем внедрения тегов разметки в цикл на Java могли создаваться итеративные визуальные элементы наподобие таблиц и списков. Необходимость частой смены синтаксиса внутри веб-страницы затрудняла разработку и коррекцию кода для программистов, поэтому около десяти лет назад начался переход с языков высокого уровня на специализированные библиотеки тегов разметки и языки выражений, созданные для конкретных веб-технологий.

Теги разметки стали использовать для реализации типовых функций веб-приложений, а выражения - для доступа к данным и вызова функций, хранимых в серверных объектах. Типичный представитель этой группы - технология JavaServer Pages (JSP), библиотека тегов которой JSP Standard Tag Library поддерживает такие задачи, как: манипуляция с XML-документами, циклы, условия, опрос СУБД (привязка к данным) и интернационализация (форматирование данных). Язык выражений JSP - EL, служащий средством привязки к данным, предлагает удобную нотацию для работы с объектами и свойствами приложения.

Существует целый ряд похожих на JSP инструментариев веб-разработки: для планировки и задания структуры (в них используются шаблоны), для привязки к данным с помощью языка выражений, а поведение UI задается с помощью обработчиков событий, реализованных средствами языка ECMAScript и интерфейса программирования Document Object Model. Форматирование данных выполняется с помощью специализированных библиотек тегов, для стилизации внешнего вида обычно применяется CSS (Cascading Style Sheets). Популярные представители этой категории инструментов: ASP, PHP, Struts, WebWork, Struts2, Spring MVC, Spyce и Ruby on Rails.

Объектно-ориентированные и событийные инструменты

Значительная доля инструментариев для создания UI базируется на объектно-ориентированной модели. Обычно эти инструментарии предлагают библиотеку готовых элементов UI, и их главными преимуществами являются простота составления многократно используемых блоков из простых компонентов и интуитивно понятный, гибкий процесс программирования поведения и взаимодействия, основанный на обработчиках событий. В этих инструментариях все задачи разработки UI решаются с использованием специализированных объектных API. К данной категории относятся среды: Visual Basic, MFC, AWT, Swing, SWT, Delphi, Google Web Toolkit, Cocoa Touch UIKit, Vaadin и др. Сюда же можно отнести инструментарий Nokia Qt, предлагающий ряд оригинальных концепций. В некоторых инструментариях вся сложность взаимодействия между элементами структуры UI реализуется с помощью обработчиков событий, а в Qt в дополнение к ним есть «сигналы» и «слоты»: сигнал передается компонентом UI всякий раз, когда происходит определенное событие. Слот - это метод, вызываемый в ответ на определенный сигнал, который можно декларативно связать с каким угодно количеством слотов, и наоборот, один слот может получать сколько угодно сигналов. Элемент, передающий сигнал, «не знает», какой слот его получит. Таким образом, элементы пользовательского интерфейса слабо связаны соединениями «сигнал-слот». Данный механизм способствует использованию принципа инкапсуляции и предоставляет возможность декларативно задавать поведение UI.

Гибриды

Гибридные технологии относительно новы в мире разработки UI общего назначения - наряду с шаблонами и языками выражений в подобных инструментариях применяется объектный API. Типичный представитель - JavaServer Faces: библиотеки тегов служат для описания структуры и планировки, а также для форматирования данных; язык выражений - для привязки элементов и событий к серверным объектам и коду приложений; объектный API - для отображения элементов, управления их состоянием, обработки событий и контроля ввода. Другие популярные инструментарии в этой категории: ASP.NET MVC, Apache Wicket, Apache Tapestry, Apache Click и ZK Framework.

Среда Adobe Flex концептуально близка к технологиям этой категории, так как в ней для структурирования и планировки используются шаблоны, а программирование целиком выполняется на языке ActionScript. Подобно Qt, среда Flex предоставляет механизм для решения задач, связанных с программированием поведения и привязкой к данным.

Декларативные инструментарии

Такие инструменты - новейшее направление в области средств разработки UI. Для указания структуры пользовательского интерфейса в них используются языки на основе XML и JSON (JavaScript Object Notation), а для остальных задач разработки UI применяется преимущественно декларативная нотация. В отличие от гибридных подходов, в основном рассчитанных на веб-интерфейсы, декларативные применяются еще в разработке нативных приложений для мобильных и настольных платформ.

API пользовательского интерфейса Android - событийно-зависимый, объектно-ориентированный, но наряду с основным в ОС есть вспомогательный API, базирующийся на XML, который позволяет декларировать структуру и планировку пользовательского интерфейса, а также стилизовать его элементы и управлять их свойствами. Декларативное описание интерфейса нагляднее показывает его структуру и помогает в отладке; позволяет без перекомпиляции менять планировку; помогает адаптироваться к различным платформам, размерам экрана и соотношениям его сторон. При создании более динамических пользовательских интерфейсов указывать и менять структуру элементов можно и программно - с помощью объектных API, но привязка к данным не поддерживается. Существует, правда, Android-Binding - стороннее решение с открытым кодом, позволяющее привязывать элементы пользовательского интерфейса к моделям данных.

Создавать UI для программ Windows и функционально богатых интернет-приложений, основанных, соответственно, на технологиях Windows Platform Foundation и Microsoft Silverlight, можно с использованием другого XML-словаря - eXtensible Application Markup Language (XAML). Он позволяет задавать структуру, планировку и стиль UI, а кроме того, в отличие от языка разметки Android, в нем поддерживается привязка к данным и возможность обработки событий.

В Nokia разработчикам рекомендуют Qt Quick - кросс-платформный инструментарий для настольных, мобильных и встраиваемых ОС, поддерживающий QML (декларативный скриптовый язык на основе синтаксиса JSON). Описание пользовательского интерфейса имеет иерархическую структуру, а поведение программируется на ECMAScript. Здесь, как и в обычном Qt, поддерживается механизм «сигнал-слот». Qt Quick поддерживает возможность привязки свойств элементов UI к модели данных, а также концепцию машины состояний, позволяющую графически моделировать поведение интерфейса.

Еще один пример - Enyo, кросс-платформный инструментарий для создания UI на ECMAScript, в котором структура интерфейса задается декларативно, а поведение регулируется обработчиками событий. События обрабатываются тремя способами: на уровне отдельных компонентов UI, путем передачи от потомка к родителю без прямой привязки, а также за счет шировоковещательной трансляции и подписки на такие сообщения (тоже без прямой привязки). Благодаря слабой связи элементов UI расширяются возможности многократного использования и инкапсуляции больших фрагментов интерфейса. По сути, основное достоинство Enyo - это модель инкапсуляции, благодаря которой UI можно компоновать из многократно используемых самодостаточных строительных блоков с заданными интерфейсами. Данная модель способствует абстрагированию и охватывает все архитектурные уровни UI. Участники проекта Enyo работают над реализацией поддержки привязки к данным.

Eclipse XML Window Toolkit - еще один инструментарий, ориентированный на декларативное описание UI. Первоначальная задача его создания состояла в объединении в Eclipse всех инструментов разработки UI, включая SWT, JFace, Eclipse Forms и другие - все их элементы так или иначе имеют соответствия в XWT. Структура и планировка UI в XWT задаются с помощью языка на основе XML, а для привязки к данным (доступа к Java-объектам приложения) используется язык выражений. Обработка событий программируется на Java, а для стилизации элементов интерфейса используется CSS. Механизм исполнения приложений XWT реализован в виде Java-апплета и элемента ActiveX, то есть может работать практически в любом браузере.

В этой категории существует немало похожих инструментов: в AmpleSDK, например, в качестве языка описания UI используется XUL, функции ECMAScript применяются для программирования динамического поведения, CSS - для стилизации. В Dojo Toolkit интерфейс задается декларативно и предусмотрены широкий выбор готовых элементов, объектное хранилище для доступа к данным и обработчик событий на основе ECMAScript с механизмом публикации-подписки. Инструментарий поддерживает интернационализацию, развитый API для опроса данных, модуляризацию и множественное наследование классов.

Инструментарии на основе моделей

Значительная часть технологий разработки UI основана на моделях и предметно-ориентированных языках. В основном это модели интерфейсов, но могут использоваться и доменные модели. В обоих случаях модель нужна для генерации пользовательского интерфейса заранее либо интерпретируется в период исполнения. Этот класс технологий поднимает уровень абстракции, предлагает улучшенные систематические методы проектирования и реализации пользовательских интерфейсов, а также предоставляет инфраструктуру автоматизации соответствующих задач. Однако, по мнению некоторых исследователей , модельно-ориентированные технологии не дают универсального способа интеграции пользовательского интерфейса с приложением, а также пока нет согласия относительно того, какой набор моделей оптимально подходит для описания UI. Не решена задача привязки данных, и не объединены модели для решения других задач разработки UI.

Анализируя поколения модельно-ориентированных подходов к разработке UI начиная с 1990-х, можно прийти к выводу , что сегодня имеется общепринятое представление об уровнях абстракции и типах моделей, подходящих для разработки современных пользовательских интерфейсов, однако до сих пор нет единого мнения (стандартов) относительно информации (семантики), которую должны содержать различные модели. Считать базовыми можно модели задач, диалогов и презентации: презентационная модель решает задачи структурирования, планирования и стилизации; модель задач отвечает за привязку к данным - для каждой задачи указываются объекты UI и логики, с которыми предстоит работать; диалоговая модель охватывает поведенческие аспекты. Пример модели задач - Concurrent-TaskTrees (CTT), ее можно использовать совместно с языком MARIA, который реализует остальные модели UI . CTT в сочетании с MARIA представляет собой полноценный модельно-ориентированный инструментарий. Довольно большое семейство средств моделирования UI полагается также на язык UML, модели «сущность-связь» или подобные. Профили UML широко применяются в построении пользовательских интерфейсов бизнес-приложений. Существуют и другие активно используемые инструментарии - например, WebRatio, UMLi, Intellium Virtual Enterprise и SOLoist.

Обобщенные пользовательские интерфейсы

Небольшое, но значимое подмножество технологий формирования пользовательских интерфейсов генерируют UI, опираясь на модели пользователя, данных, задач или другие виды моделей приложения. Интерфейс генерируется исходя из модели целиком или полуавтоматически. Модели также могут интерпретироваться в период исполнения без использования в качестве основы для генерации интерфейса. В любом случае, благодаря высокому уровню автоматизации построения UI, технологии данной категории экономят время разработчика и снижают число ошибок, а генерируемые интерфейсы имеют единообразную структуру. Однако обобщенные UI не отличаются гибкостью, имеют ограниченную функциональность и непредсказуемый процесс генерации. Тем не менее при наличии прямой связи с доменной моделью разработка приложений с обобщенными UI вполне реальна. В данной категории около десятка примеров во главе с широко применяемым архитектурным шаблоном Naked Objects. Автоматическую генерацию UI можно с успехом применять в отдельных предметных областях - например, при дизайне диалоговых окон и пользовательских интерфейсов для удаленного управления системами. Дальнейшее развитие этого класса технологий исследователи видят в усовершенствовании методик моделирования и поиске новых способов комбинирования моделей в целях повышения удобства сгенерированных UI.

Тенденции и сложности

На рисунке представлена хронология появления различных инструментариев разработки UI, распределение их по категориям и основным областям применения, а в табл. 2 указаны способы, которыми каждая из технологий решает различные задачи разработки UI.

Для веб-разработки с целью развития общеупотребительных технологий характерны две противоположные тенденции. После технологий на основе шаблонов появились инструментарии с объектно-ориентированными API, которые чаще всего дополнялись шаблонами (в случае гибридных подходов) либо полностью заменяли их (GWT и Vaadin). В принципе, это вполне логично, учитывая общее превосходство объектно-ориентированных языков над шаблонными (наследование, полиморфизм, инкапсуляция, параметризация, многократное использование и т. д.), потребность в развитых концепциях и механизмах для составления обширных структур UI, а также «историю успеха» объектно-ориентированных API в эпоху настольных ПК.

Примечательно, что по сравнению с императивными и объектно-ориентированными способами формирования UI сегодня стали шире применяться декларативные - например, общеупотребительными становятся HTML, XML, XPath, CSS, JSON и подобные нотации. Большая часть структуры UI, как правило, статична, так что декларативные нотации отлично справляются с задачами структурирования, планировки и привязки к данным. Но поведенческие аспекты UI по-прежнему реализуются по классической событийно-зависимой парадигме, хотя есть исключения - когда применяются декларативные средства.

Заметная тенденция в развитии UI - ориентация на стандартные технологии и платформы. XML и ECMAScript сегодня популярны как никогда, хотя специализированные технологии, особенно из числа модельно-ориентированных, активно борются за жизненное пространство с большими техническими стандартами.

Можно назвать несколько задач, ждущих своего решения поставщиками инструментариев разработки и необходимых для задания многоуровневых архитектур. Пользовательские интерфейсы крупномасштабных бизнес-приложений нередко состоят из сотен страниц или больше, и в таких случаях абсолютно необходим четкий обзор системной архитектуры. Существует новая методика моделирования, которая решает эту проблему путем введения концепции капсулы, обеспечивающей строгую инкапсуляцию фрагментов UI и позволяющей задавать архитектуру с разными уровнями детализации. Капсула уже обладает внутренней структурой, которую можно последовательно рекурсивно применять на всех более низких уровнях компонентов UI. Аналогичную задачу пытаются решить разработчики Enyo и WebML.

Гибкость, расширяемость и широта поддержки инструментальных средств - реальные преимущества общеупотребительных технологий разработки UI, однако пока они страдают от довольно низкого уровня абстракции и недостаточной выразительности. С другой стороны, модельно-ориентированным подходам стоит избегать наследования семантики от низкоуровневых моделей UI, в противном случае абстрактные модели пользовательских интерфейсов могут стать такими же сложными, как и сама реализация UI. Вместо использования знаний из предметной области UI и семантики модели приложения, от дизайнеров пользовательских интерфейсов по-прежнему требуется непосредственная работа с низкоуровневыми компонентами: диалоговыми окнами, меню и обработчиками событий.

Технологиям разработки UI свойственна еще одна серьезная проблема, связанная с требованиями адаптации для многих целевых платформ, характерными для всех современных интерактивных приложений. К счастью, модельно-ориентированное сообщество вовремя отреагировало - в 2003 году была предложена объединяющая универсальная архитектура для процессов, моделей и методов, используемых при построении многоплатформных UI.

Нынешнее многообразие компьютерных устройств и платформ несколько напоминает эпоху настольных ПК конца 90-х с ее обилием предлагаемых разными поставщиками инструментариев для построения пользовательских интерфейсов. На сегодня HTML5 еще не решил проблему технологической разноголосицы ввиду ограниченной поддержки аппаратных функций и интерфейсов программирования. В конечном счете, как и в случае со многими проблемами программной инженерии, сегодня для разработки UI нужны понятные и простые решения, требующие, однако, от их создателей невероятно много усилий по реализации.

Литература

  1. P.P. Da Silva. User Interface Declarative Models and Development Environments: A Survey. Proc. Interactive Systems: Design, Specification, and Verification, Springer, 2000, Р. 207-226.
  2. G. Meixner, F. Paterno, J. Vanderdonckt. Past, Present, and Future of Model-Based User Interface Development // i-com. 2011. vol. 10, N3, Р. 2-11.
  3. G. Mori, F. Paterno, C. Santoro. CTTE: Support for Developing and Analyzing Task Models for Interactive Systems Design // IEEE Trans. Software Eng. 2002, vol. 28, N8, P. 797-813.

Жарко Мияйлович ([email protected]) - старший инженер, Драган Миличев ([email protected]) - доцент, Белградский университет.

Zarko Mijailovic, Dragan Milicev, A Retrospective on User Interface Development Technology, IEEE Software, November/December 2013, IEEE Computer Society. All rights reserved. Reprinted with permission.

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

"Системное программное обеспечение"

Тема: "Пользовательский интерфейс"



Введение

1. Понятие интерфейса пользователя

2. Виды интерфейсов

2.1 Командный интерфейс

2.2 Графический интерфейс

2.2.1 Простой графический интерфейс

2.2.2 WIMP - интерфейс

2.3 Речевая технология

2.4 Биометрическая технология

2.5 Семантический (общественный) интерфейс

2.6 Типы интерфейсов

3. Методы и средства разработки пользовательского интерфейса

4. Стандартизация пользовательского интерфейса

Список литературы


Введение


Как известно, процесс проникновения информационных технологий практически во все сферы человеческой деятельности продолжает развиваться и углубляться. Помимо уже привычных и широко распространенных персональных компьютеров, общее число которых достигло многих сотен миллионов, становится все больше и встроенных средств вычислительной техники. Пользователей всей этой разнообразной вычислительной техники становится все больше, причем наблюдается развитие двух вроде бы противоположных тенденций. С одной стороны, информационные технологии все усложняются, и для их применения, и тем более дальнейшего развития, требуется иметь очень глубокие познания. С другой стороны, упрощаются интерфейсы взаимодействия пользователей с компьютерами. Компьютеры и информационные системы становятся все более дружественными и понятными даже для человека, не являющегося специалистом в области информатики и вычислительной техники. Это стало возможным прежде всего потому, что пользователи и их программы взаимодействуют с вычислительной техникой посредством специального (системного) программного обеспечения - через операционную систему. Операционная система предоставляет интерфейсы и для выполняющихся приложений, и для пользователей.


1. Понятие интерфейса пользователя


Интерфейс - совокупность технических, программных и методических (протоколов, правил, соглашений) средств сопряжения в вычислительной системе пользователей с устройствами и программами, а также устройств с другими устройствами и программами.

Интерфейс - в широком смысле слова, это способ (стандарт) взаимодействия между объектами. Интерфейс в техническом смысле слова задаёт параметры, процедуры и характеристики взаимодействия объектов. Различают:

Интерфейс пользователя - набор методов взаимодействия компьютерной программы и пользователя этой программы.

Программный интерфейс - набор методов для взаимодействия между программами.

Физический интерфейс - способ взаимодействия физических устройств. Чаще всего речь идёт о компьютерных портах.

Пользовательский интерфейс - это совокупность программных и аппаратных средств, обеспечивающих взаимодействие пользователя с компьютером. Основу такого взаимодействия составляют диалоги. Под диалогом в данном случае понимают регламентированный обмен информацией между человеком и компьютером, осуществляемый в реальном масштабе времени и направленный на совместное решение конкретной задачи. Каждый диалог состоит из отдельных процессов ввода / вывода, которые физически обеспечивают связь пользователя и компьютера. Обмен информацией осуществляется передачей сообщения.


Рис.1. Взаимодействие пользователя с компьютером


В основном пользователь генерирует сообщения следующих типов:

запрос информации

запрос помощи

запрос операции или функции

ввод или изменение информации

В ответ пользователь получает подсказки или справки; информационные сообщения, требующие ответа; приказы, требующие действия; сообщения об ошибках и другую информацию.

Интерфейс пользователя компьютерного приложения включает:

средства отображения информации, отображаемую информацию, форматы и коды;

командные режимы, язык "пользователь - интерфейс";

диалоги, взаимодействие и транзакции между пользователем и компьютером, обратную связь с пользователем;

поддержку принятия решений в конкретной предметной области;

порядок использования программы и документацию на неё.

Пользовательский интерфейс (ПИ) часто понимают только как внешний вид программы. Однако на деле пользователь воспринимает через него всю программу в целом, а значит, такое понимание является слишком узким. В действительности ПИ объединяет в себе все элементы и компоненты программы, которые способны оказывать влияние на взаимодействие пользователя с программным обеспечением (ПО).

Это не только экран, который видит пользователь. К этим элементам относятся:

набор задач пользователя, которые он решает при помощи системы;

используемая системой метафора (например, рабочий стол в MS Windows®);

элементы управления системой;

навигация между блоками системы;

визуальный (и не только) дизайн экранов программы;

средства отображения информации, отображаемая информация и форматы;

устройства и технологии ввода данных;

диалоги, взаимодействие и транзакции между пользователем и компьютером;

обратная связь с пользователем;

поддержка принятия решений в конкретной предметной области;

порядок использования программы и документация на нее.


2. Виды интерфейсов


Интерфейс - это, прежде всего, набор правил. Как любые правила, их можно обобщить, собрать в "кодекс", сгруппировать по общему признаку. Таким образом, мы пришли к понятию "вид интерфейса" как объединение по схожести способов взаимодействия человека и компьютеров. Вкратце можно предложить следующую схематическую классификацию различных интерфейсов общения человека и компьютера.

Современными видами интерфейсов являются:

1) Командный интерфейс. Командный интерфейс называется так по тому, что в этом виде интерфейса человек подает "команды" компьютеру, а компьютер их выполняет и выдает результат человеку. Командный интерфейс реализован в виде пакетной технологии и технологии командной строки.

2) WIMP - интерфейс (Window - окно, Image - образ, Menu - меню, Pointer - указатель). Характерной особенностью этого вида интерфейса является то, что диалог с пользователем ведется не с помощью команд, а с помощью графических образов - меню, окон, других элементов. Хотя и в этом интерфейсе подаются команды машине, но это делается "опосредственно", через графические образы. Этот вид интерфейса реализован на двух уровнях технологий: простой графический интерфейс и "чистый" WIMP - интерфейс.

3) SILK - интерфейс (Speech - речь, Image - образ, Language - язык, Knowlege - знание). Этот вид интерфейса наиболее приближен к обычной, человеческой форме общения. В рамках этого интерфейса идет обычный "разговор" человека и компьютера. При этом компьютер находит для себя команды, анализируя человеческую речь и находя в ней ключевые фразы. Результат выполнения команд он также преобразует в понятную человеку форму. Этот вид интерфейса наиболее требователен к аппаратным ресурсам компьютера, и поэтому его применяют в основном для военных целей.

2.1 Командный интерфейс


Пакетная технология. Исторически этот вид технологии появился первым. Она существовала уже на релейных машинах Зюса и Цюзе (Германия, 1937 год). Идея ее проста: на вход компьютера подается последовательность символов, в которых по определенным правилам указывается последовательность запущенных на выполнение программ. После выполнения очередной программы запускается следующая и т.д. Машина по определенным правилам находит для себя команды и данные. В качестве этой последовательности может выступать, например, перфолента, стопка перфокарт, последовательность нажатия клавиш электрической пишущей машинки (типа CONSUL). Машина также выдает свои сообщения на перфоратор, алфавитно-цифровое печатающее устройство (АЦПУ), ленту пишущей машинки. Такая машина представляет собой "черный ящик" (точнее "белый шкаф"), в который постоянно подается информация и которая также постоянно "информирует" мир о своем состоянии (см. рисунок 1) Человек здесь имеет малое влияние на работу машины - он может лишь приостановить работу машины, сменить программу и вновь запустить ЭВМ. Впоследствии, когда машины стали помощнее и могли обслуживать сразу нескольких пользователей, вечное ожидание пользователей типа: "Я послал данные машине. Жду, что она ответит. И ответит ли вообще? " - стало, мягко говоря, надоедать. К тому же вычислительные центры, вслед за газетами, стали вторым крупным "производителем" макулатуры. Поэтому с появлением алфавитно-цифровых дисплеев началась эра по-настоящему пользовательской технологии - командной строки.

Рис.2. Вид большой ЭВМ серии ЕС ЭВМ


Технология командной строки. При этой технологии в качестве единственного способа ввода информации от человека к компьютеру служит клавиатура, а компьютер выводит информацию человеку с помощью алфавитно-цифрового дисплея (монитора). Эту комбинацию (монитор + клавиатура) стали называть терминалом, или консолью. Команды набираются в командной строке. Командная строка представляет собой символ приглашения и мигающий прямоугольник - курсор. При нажатии клавиши на месте курсора появляются символы, а сам курсор смещается вправо. Это очень похоже на набор команды на пишущей машинке. Однако, в отличие от нее, буквы отображаются на дисплее, а не на бумаге, и неправильно набранный символ можно стереть. Команда заканчивается нажатием клавиши Enter (или Return) После этого осуществляется переход в начало следующей строки. Именно с этой позиции компьютер выдает на монитор результаты своей работы. Затем процесс повторяется. Технология командной строки уже работала на монохромных алфавитно-цифровых дисплеях. Поскольку вводить позволялось только буквы, цифры и знаки препинания, то технические характеристики дисплея были не существенны. В качестве монитора можно было использовать телевизионный приемник и даже трубку осциллографа.

Обе эти технологии реализуются в виде командного интерфейса - машине подаются на вход команды, а она как бы "отвечает" на них.

Преобладающим видом файлов при работе с командным интерфейсом стали текстовые файлы - их и только их можно было создать при помощи клавиатуры. На время наиболее широкого использования интерфейса командной строки приходится появление операционной системы UNIX и появление первых восьмиразрядных персональных компьютеров с многоплатформенной операционной системой CP / M.


2.2 Графический интерфейс


Как и когда появился графический интерфейс? Его идея зародилась в середине 70-х годов, когда в исследовательском центре Xerox Palo Alto Research Center (PARC) была разработана концепция визуального интерфейса. Предпосылкой графического интерфейса явилось уменьшение времени реакции компьютера на команду, увеличение объема оперативной памяти, а также развитие технической базы компьютеров. Аппаратным основанием концепции, конечно же, явилось появление алфавитно-цифровых дисплеев на компьютерах, причем на этих дисплеях уже имелись такие эффекты, как "мерцание" символов, инверсия цвета (смена начертания белых символов на черном фоне обратным, то есть черных символов на белом фоне), подчеркивание символов. Эти эффекты распространились не на весь экран, а только на один или более символов. Следующим шагом явилось создание цветного дисплея, позволяющего выводить, вместе с этими эффектами, символы в 16 цветах на фоне с палитрой (то есть цветовым набором) из 8 цветов. После появления графических дисплеев, с возможностью вывода любых графических изображений в виде множества точек на экране различного цвета, фантазии в использовании экрана вообще не стало границ! Первая система с графическим интерфейсом 8010 Star Information System группы PARC, таким образом, появилась за четыре месяца до выхода в свет первого компьютера фирмы IBM в 1981 году. Первоначально визуальный интерфейс использовался только в программах. Постепенно он стал переходить и на операционные системы, используемых сначала на компьютерах Atari и Apple Macintosh, а затем и на IBM - совместимых компьютерах.

С более раннего времени, и под влиянием также и этих концепций, проходил процесс по унификации в использовании клавиатуры и мыши прикладными программами. Слияние этих двух тенденций и привело к созданию того пользовательского интерфейса, с помощью которого, при минимальных затратах времени и средств на переучивание персонала, можно работать с любыми программным продуктом. Описание этого интерфейса, общего для всех приложений и операционных систем, и посвящена данная часть.


2.2.1 Простой графический интерфейс

На первом этапе графический интерфейс очень походил на технологию командной строки. Отличия от технологии командной строки заключались в следующим:

1. При отображении символов допускалось выделение части символов цветом, инверсным изображением, подчеркиванием и мерцанием. Благодаря этому повысилась выразительность изображения.

2. В зависимости от конкретной реализации графического интерфейса курсор может представляться не только мерцающим прямоугольником, но и некоторой областью, охватывающей несколько символов и даже часть экрана. Эта выделенная область отличается от других, невыделенных частей (обычно цветом).

3. Нажатие клавиши Enter не всегда приводит к выполнению команды и переходу к следующей строке. Реакция на нажатие любой клавиши во многом зависит от того, в какой части экрана находился курсор.

4. Кроме клавиши Enter, на клавиатуре все чаще стали использоваться "серые" клавиши управления курсором.

5. Уже в этой редакции графического интерфейса стали использоваться манипуляторы (типа мыши, трекбола и т.п. - см. рис.3) Они позволяли быстро выделять нужную часть экрана и перемещать курсор.


Рис.3. Манипуляторы


Подводя итоги, можно привести следующие отличительные особенности этого интерфейса.

1) Выделение областей экрана.

2) Переопределение клавиш клавиатуры в зависимости от контекста.

3) Использование манипуляторов и серых клавиш клавиатуры для управления курсором.

4) Широкое использование цветных мониторов.

Появление этого типа интерфейса совпадает с широким распространением операционной системы MS-DOS. Именно она внедрила этот интерфейс в массы, благодаря чему 80-е годы прошли под знаком совершенствования этого типа интерфейса, улучшения характеристик отображения символов и других параметров монитора.

Типичным примером использования этого вида интерфейса является файловая оболочка Nortron Commander (о файловых оболочках смотри ниже) и текстовый редактор Multi-Edit. А текстовые редакторы Лексикон, ChiWriter и текстовый процессор Microsoft Word for Dos являются примером, как этот интерфейс превзошел сам себя.

2.2.2 WIMP - интерфейс

Вторым этапом в развитии графического интерфейса стал "чистый" интерфейс WIMP, Этот подвид интерфейса характеризуется следующими особенностями.

1. Вся работа с программами, файлами и документами происходит в окнах - определенных очерченных рамкой частях экрана.

2. Все программы, файлы, документы, устройства и другие объекты представляются в виде значков - иконок. При открытии иконки превращаются в окна.

3. Все действия с объектами осуществляются с помощью меню. Хотя меню появилось на первом этапе становления графического интерфейса, оно не имело в нем главенствующего значения, а служило лишь дополнением к командной строке. В чистом WIMP - интерфейсе меню становится основным элементом управления.

4. Широкое использование манипуляторов для указания на объекты. Манипулятор перестает быть просто игрушкой - дополнением к клавиатуре, а становится основным элементом управления. С помощью манипулятора УКАЗЫВАЮТ на любую область экрана, окна или иконки, ВЫДЕЛЯЮТ ее, а уже потом через меню или с использованием других технологий осуществляют управление ими.

Следует отметить, что WIMP требует для своей реализации цветной растровый дисплей с высоким разрешением и манипулятор. Также программы, ориентированные на этот вид интерфейса, предъявляют повышенные требования к производительности компьютера, объему его памяти, пропускной способности шины и т.п. Однако этот вид интерфейса наиболее прост в усвоении и интуитивно понятен. Поэтому сейчас WIMP - интерфейс стал стандартом де-факто.

Ярким примером программ с графическим интерфейсом является операционная система Microsoft Windows.

2.3 Речевая технология


С середины 90-х годов, после появления недорогих звуковых карт и широкого распространения технологий распознавания речи, появился так называемый "речевая технология" SILK - интерфейса. При этой технологии команды подаются голосом путем произнесения специальных зарезервированных слов - команд. Основными такими командами (по правилам системы "Горыныч") являются:

"Отдыхай" - выключение речевого интерфейса.

"Открыть" - переход в режим вызова той или иной программы. Имя программы называется в следующем слове.

"Буду диктовать" - переход из режима команд в режим набора текста голосом.

"Режим команд" - возврат в режим подачи команд голосом.

и некоторые другие.

Слова должны выговариваться четко, в одном темпе. Между словами обязательна пауза. Из-за неразвитости алгоритма распознавания речи такие системы требует индивидуальной предварительной настройки на каждого конкретного пользователя.

"Речевая" технология является простейшей реализацией SILK - интерфейса.


2.4 Биометрическая технология


Эта технология возникла в конце 90-х годов XX века и на момент написания книги еще разрабатывается. Для управления компьютером используется выражение лица человека, направление его взгляда, размер зрачка и другие признаки. Для идентификации пользователя используется рисунок радужной оболочки его глаз, отпечатки пальцев и другая уникальная информация. Изображения считываются с цифровой видеокамеры, а затем с помощью специальных программ распознавания образов из этого изображения выделяются команды. Эта технология, по-видимому, займет свое место в программных продуктах и приложениях, где важно точно идентифицировать пользователя компьютера.


2.5 Семантический (общественный) интерфейс


Этот вид интерфейса возник в конце 70-х годов XX века, с развитием искусственного интеллекта. Его трудно назвать самостоятельным видом интерфейса - он включает в себя и интерфейс командной строки, и графический, и речевой, и мимический интерфейс. Основная его отличительная черта - это отсутствие команд при общении с компьютером. Запрос формируется на естественном языке, в виде связанного текста и образов. По своей сути это трудно называть интерфейсом - это уже моделирование "общения" человека с компьютером. С середины 90-х годов XX века публикации, относящихся к семантическому интерфейсу, уже не встречались. Похоже, что в связи с важным военным значением этих разработок (например, для автономного ведения современного боя машинами - роботами, для "семантической" криптографии) эти направления были засекречены. Информация, что эти исследования продолжаются, иногда появляется в периодической печати (обычно в разделах компьютерных новостей).


2.6 Типы интерфейсов


Интерфейсы пользователя бывают двух типов:

1) процедурно-ориентированные:

примитивные

со свободной навигацией

2) объектно-ориентированные:

прямого манипулирования.

Процедурно-ориентированный интерфейс использует традиционную модель взаимодействия с пользователем, основанную на понятиях "процедура" и "операция". В рамках этой модели программное обеспечение предоставляет пользователю возможность выполнения некоторых действий, для которых пользователь определяет соответствие данных и следствием выполнения которых является получение желаемого результата.

Объектно-ориентированные интерфейсы используют модель взаимодействия с пользователем, ориентированную на манипулирование объектами предметной области. В рамках этой модели пользователю предоставляется возможность напрямую взаимодействовать с каждым объектом и инициировать выполнение операций, в процессе которых взаимодействуют несколько объектов. Задача пользователя формулируется как целенаправленное изменение некоторого объекта. Объект понимается в широком смысле слова - модель БД, системы и т.д. Объектно-ориентированный интерфейс предполагает, что взаимодействие с пользователем осуществляется посредством выбора и перемещения пиктограмм соответствующей объектно-ориентированной области. Различают однодокументные (SDI) и многодокументные (MDI) интерфейсы.

Процедурно-ориентированные интерфейсы:

1) Обеспечивают пользователю функции, необходимые для выполнения задач;

2) Акцент делается на задачи;

3) Пиктограммы представляют приложения, окна или операции;

Объектно-ориентированные интерфейсы:

1) Обеспечивает пользователю возможность взаимодействия с объектами;

2) Акцент делается на входные данные и результаты;

3) Пиктограммы представляют объекты;

4) Папки и справочники являются визуальными контейнерами объектов.

Примитивным называется интерфейс, который организует взаимодействие с пользователем и используется в консольном режиме. Единственное отклонение от последовательного процесса, который обеспечивается данными, заключается в организации цикла для обработки нескольких наборов данных.

Интерфейс Меню. В отличие от примитивного интерфейса, позволяет пользователю выбирать операцию из специального списка, выводимого ему программой. Эти интерфейсы предполагают реализацию множества сценариев работы, последовательность действий в которых определяется пользователями. Древовидная организация меню предполагает строго ограниченную реализацию. При этом возможны два варианта организации меню:

каждое окно меню занимает весь экран

на экране одновременно присутствуют несколько разноуровневых меню (Windows).

В условиях ограниченной навигации, независимо от варианта реализации, поиск пункта более чем двух уровневого меню оказывается довольно сложной задачей.

Интерфейс со свободной навигацией (графический интерфейс). Поддерживает концепцию интерактивного взаимодействия с ПО, визуальную обратную связь с пользователем и возможность прямого манипулирования объектом (кнопки, индикаторы, строки состояния). В отличие от интерфейса Меню, интерфейс со свободной навигацией обеспечивает возможность осуществления любых допустимых в конкретном состоянии операций, доступ к которым возможен через различные интерфейсные компоненты ("горячие" клавиши и т.д.). Интерфейс со свободной навигацией реализуется с использованием событийного программирования, что предполагает применение визуальных средств разработки (посредством сообщений).

3. Методы и средства разработки пользовательского интерфейса


Интерфейс имеет важное значение для любой программной системы и является неотъемлемой ее составляющей, ориентированной, прежде всего, на конечного пользователя. Именно через интерфейс пользователь судит о прикладной программе в целом; более того, часто решение об использовании прикладной программы пользователь принимает по тому, насколько ему удобен и понятен пользовательский интерфейс. Вместе с тем, трудоемкость проектирования и разработки интерфейса достаточно велика. По оценкам специалистов в среднем она составляет более половины времени реализации проекта. Актуальным является снижение затрат на разработку и сопровождение программных систем или разработка эффективного программного инструментария.

Одним из путей снижения затрат на разработку и сопровождение программных систем является наличие в инструментарии средств четвертого поколения, позволяющих на высоком уровне описать (специфицировать) создаваемое программное средство и далее по спецификации автоматически сгенерировать исполнимый код.

В литературе не существует единой общепринятой классификации средств для разработки пользовательского интерфейса. Так, программное обеспечение для разработки пользовательского интерфейса можно разделить на две основные группы - инструментарий для разработки пользовательского интерфейса (toolkits) и высокоуровневые средства разработки интерфейса (higher-level development tools). Инструментарий для разработки пользовательского интерфейса, как правило, включает в себя библиотеку примитивов компонентов интерфейса (меню, кнопки, полосы прокрутки и др.) и предназначен для использования программистами. Высокоуровневые средства разработки интерфейса могут быть использованы непрограммистами и снабжены языком, который позволяет специфицировать функции ввода-вывода, а также определять, используя технику непосредственного манипулирования, интерфейсные элементы. К таким средствам относятся построители диалога (interface builders) и СУПИ - системы управления пользовательским интерфейсом (User Interface Management Systems - UIMS). Помимо СУПИ, некоторые авторы используют такие термины, как User Interface Development Systems (UIDS) - системы разработки пользовательского интерфейса, User Interface Design Environment (UIDE) - среда разработки пользовательского интерфейса и др.

Специализированные средства для разработки интерфейса позволяют упростить разработку пользовательского интерфейса, предлагая разработчику специфицировать компоненты пользовательского интерфейса с использованием языков спецификаций. Можно выделить несколько основных способов спецификации интерфейса:

1. Языковой, когда применяются специальные языки для задания синтаксиса интерфейса (декларативные, объектно-ориентированные, языки событий и др.).

2. Графическая спецификация связана с определением интерфейса, как правило, средствами визуального программирования, программированием демонстраций и по примерам. Подобный способ поддерживает ограниченный класс интерфейсов.

3. Спецификация интерфейса, основанная на объектно-ориентированном подходе, связана с принципом, называемым непосредственное манипулирование. Основное его свойство - взаимодействие пользователя с индивидуальными объектами, а не со всей системой как единым целым. Типичными компонентами, используемыми для манипуляций с объектами и управляющими функциями, являются обработчики, меню, зоны диалога, кнопки различного вида.

4. Спецификация интерфейса по спецификации прикладной задачи. Здесь интерфейс создается автоматически по спецификации семантики прикладной задачи. Однако сложность описания интерфейса затрудняет возможности скорого появления систем, реализующих данный подход.

Основной концепцией СУПИ является отделение разработки пользовательского интерфейса от остального приложения. В настоящее время идея раздельного проектирования интерфейса и приложения либо закреплена в определении СУПИ либо является основным его свойством.

В состав СУПИ определен как набор инструментов этапа разработки и периода исполнения. Инструменты этапа разработки оперируют с моделями интерфейса для построения их проектов. Они могут разделяться на две группы: интерактивные инструменты, например редакторы моделей, и автоматические инструменты, например генератор форм. Инструменты периода исполнения используют модель интерфейса для поддержки деятельности пользователя, например, для сбора и анализа используемых данных.

Функциями СУПИ является содействие и облегчение разработки и сопровождения пользовательского интерфейса, а также управление взаимодействием между пользователем и прикладной программой.

Таким образом, в настоящее время существует большое количество инструментальных средств для разработки интерфейса, поддерживающих различные методы его реализации.


4. Стандартизация пользовательского интерфейса


В первом подходе оценку производит конечный пользователь (или тестер), суммируя результаты работы с программой в рамках следующих показателей ISO 9241-10-98 Ergonomic requirements for office work with visual display terminals (VDTs). P.11. Guidance on usability specification and measures:

эффективности (effectiveness) - влияния интерфейса на полноту и точность достижения пользователем целевых результатов;

продуктивности (efficiency) или влияния интерфейса на производительность пользователя;

степени (субъективной) удовлетворенности (satisfaction) конечного пользователя этим интерфейсом.

Эффективность является критерием функциональности интерфейса, а степень удовлетворенности и, косвенно, продуктивность - критерием эргономичности. Вводимые здесь меры соответствуют общей прагматической концепции оценки качества по соотношению "цели / затраты".

Во втором подходе пытаются установить, каким (руководящим эргономическим) принципам должен удовлетворять пользовательский интерфейс с точки зрения оптимальности человеко-машинного взаимодействия. Развитие этого аналитического подхода было вызвано потребностями проектирования и разработки ПО, поскольку позволяет сформулировать руководящие указания по организации и характеристикам оптимального пользовательского интерфейса. Этот подход может быть использован и при оценке качества разработанного пользовательского интерфейса. В этом случае показатель качества оценивается экспертом по степени реализации руководящих принципов или вытекающих из них более конкретных графических и операционных особенностей оптимального "человеко-ориентированного" пользовательского интерфейса.

Стандартизация и проектирование. При проектировании пользовательского интерфейса исходным решением является выбор базовых стандартов типов управляющих средств интерфейса, который должен учитывать специфику соответствующей предметной области. Конкретизация стиля пользовательского интерфейса осуществляется в нормативных документах отраслевого и фирменного уровня. Возможна дальнейшая детализация дизайна интерфейса для определенной группы программных продуктов фирмы-разработчика. При разработке пользовательского интерфейса необходим учет характеристик предполагаемых конечных пользователей разрабатываемого программного средства. Спецификация типа пользовательского интерфейса определяет только его синтактику. Второе направление стандартизации в области проектирования - формирование конкретной системы руководящих эргономических принципов. Решение об их выборе должно вырабатываться совместно всеми членами команды по проектированию . Эта система должна быть согласована с соответствующим базовым стандартом (или группой стандартов). Для того чтобы стать эффективным инструментом проектирования система руководящих принципов должна быть доведена до уровня конкретных инструкций для программистов. При разработке инструкций учитываются нормативные документы по типу (стилю) интерфейса, а нормативные документы по проектированию пользовательского интерфейса должны войти в профиль стандартов программного проекта и в техническое задание.

Стандарты и качество. Формально стандартизированность пользовательского интерфейса уместно связать с другими инфраструктурными субхарактеристиками качества программного продукта, такими, как соответствие (conformance) (в том числе и соответствие стандартам) и взаимозаменяемость (replaceability) (ГОСТ Р ИСО МЭК 9126-93). Выбор конкретного средства проектирования (языки быстрой разработки приложений, CASE-средства, конструкторы графических интерфейсов) может привести разработчика к необходимости придерживаться стандарта интерфейса, положенного в его основу.

С другой стороны, выбор разработчиком стандарта типа (стиля) пользовательского интерфейса, адекватного предметной области и используемой ОС, потенциально должен обеспечить, хотя бы отчасти, выполнение таких принципов качества пользовательского интерфейса, как естественность и согласованность в пределах рабочей среды . Явный учет синтактики интерфейса облегчает создание однородного по стилю и предсказуемого для пользователя интерфейса. Кроме того, нужно учесть, что при разработке самого стандарта уже учитывались базовые принципы проектирования пользовательского интерфейса.

Вводимые в ISO 9241-11 меры практичности организация-заказчик может использовать до разработки заказной системы в качестве общих рамок для определения требований по практичности, которым должна соответствовать будущая система и по которым будут проводиться приемочные испытания. Таким образом, создается основа для обеспечения полноты, измеримости и сопоставимости этих требований, что может косвенно оказывать позитивное влияние на качество проектируемого программного изделия.

Означает ли, что неукоснительное следование стандартам может обеспечить необходимое качество пользовательского интерфейса? Для простых и рутинных приложений - следование стандарту гарантирует только минимальный уровень качества. Для сложных и пионерских приложений требование обеспечения функциональной полноты может вступить в противоречие с ограниченными возможностями, предоставляемыми стандартом управляющих средств пользовательского интерфейса.


Список литературы


Т.Б. Большаков, Д.В. Иртегов. Оперционные системы. Материалы сайта http: // www. citforum. ru / operating_systems / ois / introd. shtml.

Методы и средства разработки пользовательского интерфейса: современное состояние, Клещев А.С. , Грибова В.В. , 2001. Материалы сайта http: // www. swsys. ru / index. php? page=article&id=765.

Загрузка...